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Background
• Cancer survival rate prediction
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Training Data

Predictive Model

Unknown Testing Data

• The performance of traditional predictive model is not stable

City Hospital

University Hospital

Features:
• Body status
• Income
• Treatments
• Medications

Higher income, higher survival rate.

City Hospital
Stable

Survival rate is not so correlated with income.



• Prediction / Classification
• 𝑋𝑋: vector of features; 𝑌𝑌 = 0,1
• Environment: joint distribution of X and Y, denoted as 𝑃𝑃 𝑋𝑋𝑌𝑌

• Suppose 𝑋𝑋 = {𝑆𝑆,𝑉𝑉}, and 𝑌𝑌 = 𝑓𝑓 𝑆𝑆 + 𝜀𝜀
• 𝑆𝑆: set of stable (causal) features, such as treatments, medications
• 𝑉𝑉: set of noisy features, such as income, location
• Assumption: 𝑃𝑃(𝑌𝑌|𝑆𝑆) is stable across environments, that is 𝑃𝑃 𝑌𝑌 𝑋𝑋 = 𝑃𝑃(𝑌𝑌|𝑆𝑆)

• Why would a predictive model not be stable?
• Dependence issue, 𝑌𝑌 is not independent with 𝑉𝑉
• Environment shift issue, 𝑃𝑃 𝑋𝑋𝑌𝑌 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≠ 𝑃𝑃 𝑋𝑋𝑌𝑌 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Why would a predictive model not be stable?
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Why would a predictive model not be stable?
• Dependence issue

• 𝑋𝑋 = {𝑆𝑆,𝑉𝑉}, and 𝑌𝑌 = 𝑓𝑓 𝑆𝑆 + 𝜀𝜀
• Diagram (b) & (c):

• 𝑌𝑌 is not independent with 𝑉𝑉
• Diagram (a): 𝑌𝑌 ⊥ 𝑉𝑉

• Selection bias, leading to 𝑌𝑌 is not independent with 𝑉𝑉
• Some 𝐯𝐯 ⊆ 𝑽𝑽 would be learned as important predictors

• Environment shift issue
• 𝑃𝑃 𝑋𝑋𝑌𝑌 = 𝑃𝑃 𝑌𝑌 𝑋𝑋 𝑃𝑃 𝑋𝑋 = 𝑃𝑃 𝑌𝑌 𝑆𝑆 𝑃𝑃(𝑋𝑋) (assume P(Y|S) is stable)
• Selection bias 𝑃𝑃 𝑋𝑋 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≠ 𝑃𝑃 𝑋𝑋 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
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𝑌𝑌 is not independent with 𝑉𝑉
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑽𝑽𝒕𝒕𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝒀𝒀𝒕𝒕𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕
≠ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑽𝑽𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝒀𝒀𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)



Problem – Stable Prediction
• Given one training environment 𝑒𝑒 ∈ ℰ with dataset 𝐷𝐷𝑡𝑡 = {𝑋𝑋𝑡𝑡,𝑌𝑌𝑡𝑡}
• Task: to learn a predictive model with stable performance across
unknown environments ℰ.

• Stability of the predictive model:
• Average_Error:
• Stability_Error:
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Related Work – address env. shift problem
• Covariate shift

• Kernel mean matching [1], maximum entropy [2], robust bias-aware [3]
• Importance weights: mimic the distribution of testing data to training data

• These methods require prior knowledge of testing data
• These methods ignore the dependence issue
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Related Work
• Invariant Component Learning

• Invariant prediction [4], domain generalization [5]
• Assume 𝑃𝑃(𝑌𝑌|𝑆𝑆) is stable across environments
• Finding a subset/representation of features 𝑆𝑆𝑆, such that 𝑃𝑃(𝑌𝑌|𝑆𝑆𝑆) is

invariant across all observed multiple environments

• They could still have dependence issue on 𝑉𝑉𝑆, if 𝑃𝑃(𝑌𝑌|𝑉𝑉𝑆) is also invariant
across observed environments
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Challenges
• Dependence challenge

• 𝑌𝑌 is not independent with 𝑉𝑉
• Some 𝐯𝐯 ⊆ 𝑽𝑽 would be learned as important predictors

• Environment shift challenge
• The joint distribution 𝑃𝑃(𝑋𝑋𝑌𝑌) is different across environments.
• 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑽𝑽𝒕𝒕𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝒀𝒀𝒕𝒕𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 ≠ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑽𝑽𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝒀𝒀𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)
• Can be addressed if 𝑉𝑉 ⊥ 𝑌𝑌 on training environment

• Unknown testing environments challenge
• No prior knowledge on future testing data.
• Can be addressed if 𝑉𝑉 ⊥ 𝑌𝑌 on training environment
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Key Challenge: How to make 𝑽𝑽 ⊥ 𝒀𝒀
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Our idea - link to causality

•Outcome generating mechanism
•𝑌𝑌 = 𝑓𝑓 𝑆𝑆 + 𝜀𝜀, 𝑋𝑋 = {𝑆𝑆,𝑉𝑉}

•Difference between S and V
•𝑆𝑆 has causal effect on 𝑌𝑌, 
• but 𝑉𝑉 has no causal effect on 𝑌𝑌.

•Our idea: Recover causation between 𝑋𝑋 and 𝑌𝑌,
such that 𝑉𝑉 ⊥ 𝑌𝑌, and only 𝑆𝑆 is correlated with 𝑌𝑌
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Our idea - link to causality
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X

T Y

Causal Framework

• Causal inference with observational data
• IPW [6], Entropy balancing [7], Approximate residual

balancing[8], Differentiated Confounder Balancing [9]
• Sample reweighting for variables balancing between 𝑇𝑇 = 1

and 𝑇𝑇 = 0, such that 𝑇𝑇 ⊥ 𝑋𝑋.

• After sample reweighting with 𝑾𝑾, the correlation between 𝑻𝑻 and 𝒀𝒀
should be their causation.

• But they are limited to estimate the causal effect of one variable.



Our idea – Causality Regularizer
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• Approximate Global Balancing:
• Motivation: Recovering causation between X and Y.
• Sequentially learn causation between all X and Y via

global sample weights 𝑊𝑊 by minimizing:

Loss function when
learning the causation
between X_j and Y

Sample reweighting with W recovery causation 𝑽𝑽 ⊥ 𝒀𝒀 stable prediction

X

T Y

Causal Framework



Our Algorithm 1 - GBR
• Global Balancing Regression (GBR) algorithm
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Sample re-weighted
logistic loss

Approximate Global
Balancing

Causality
Coefficients

• Other challenges: High-dimensional, and Non-linear prediction



Our Algorithm 2 - DGBR
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• Deep Global Balancing Regression (DGBR) Algorithm

Stable PredictionGlobal BalancingDeep Auto-
Encoder



Theoretical Analysis
• The components of X could be mutually independent in the
reweighted data.

• Our GBR algorithm can make 𝑽𝑽 ⊥ 𝒀𝒀

17
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Theoretical Analysis
• The components of X could be mutually independent in the
reweighted data.

• Our GBR algorithm can make 𝑽𝑽 ⊥ 𝒀𝒀
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1 

2 

Propositions 1&2 suggest that our GBR algorithm can make
a stable prediction across unknown environments



Theoretical Analysis
• Our DGBR algorithm can preserve all properties of the GBR
algorithm while making the overlap property easier to satisfy
and reducing the variance of balancing weights.

• Our DGBR algorithm can enable more accurate estimation of
P(Y|S).

• More details could be found in our paper.
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Experiments

•Baselines:
• Logistic Regression (LR)
• Deep Logistic Regression (DLR): LR + Deep Auto Encoder

•Evaluation Metric:
• RMSE, Average_Error, Stability_Error
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Experiments on Synthetic Data
•Data generating

•𝑋𝑋 = {𝑆𝑆,𝑉𝑉} is binary.
•𝑌𝑌 = ℎ(𝑓𝑓 𝑆𝑆 + 𝜖𝜖) is also binary.

•Environments generating
• Changing 𝑃𝑃𝑋𝑋𝑋𝑋 by sample selection with the bias rate: 𝑪𝑪
• Varying 𝑷𝑷(𝒀𝒀|𝑽𝑽):

• if 𝑉𝑉 = 𝑌𝑌, then 𝑝𝑝 𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 = 𝑟𝑟, otherwise 𝑝𝑝 𝑠𝑠𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑠𝑠 = 1 − r.
• Note that: 𝑟𝑟 > 0.5 implies 𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟(𝑉𝑉,𝑌𝑌) is positive
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leading to 𝑷𝑷(𝒀𝒀|𝑿𝑿) ≠ 𝑷𝑷(𝒀𝒀|𝑺𝑺)



Experiments on Synthetic Data
• Setting 𝑆𝑆 ⊥ 𝑉𝑉

• Trained on one environment 𝑪𝑪 = 𝟎𝟎.𝟖𝟖𝟖𝟖, and
tested on all environments 𝑪𝑪 = {𝟎𝟎.𝟏𝟏, … ,𝟎𝟎.𝟗𝟗}

• Different r means different environment
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• Traditional LR and DLR failed
• GBR (dark blue) is more stable than LR
• DGBR (Red) is more stable than DLR
• DGBR is more stable and precise than GBR



Experiments on Synthetic Data
• More settings: varying n, p, and r
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Vary sample size n



Experiments on Synthetic Data
• More settings: varying n, p, and r
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Vary variables’ dimension p



Experiments on Synthetic Data
• More settings: varying n, p, and r
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Vary bias rate r on training environment



Experiments on Synthetic Data
• More settings: setting SV (S is the cause of V)      

setting VS (V is the cause of S)
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The RMSE of DGBR is consistently stable and small across
environments under all settings.



Experiments on Real World Data
• Dataset Description:

• Online advertising campaign (LONGCHAMP)
• Users Feedback: 14,891 LIKE; 93,108 DISLIKE
• 56 Features for each user

• Age, gender, #friends, device, user setting on WeChat

• Experimental Setting:
• Outcome Y: users feedback
• Setting1: generating environment with bias rate r.
• Setting2: generating environment with users’ age.

28

2015

Y = 1, if LIKE
Y = 0, if DISLIKE



Experiments on Real World Data – setting 1
• Environments generating:

• Pre-selecting some noisy features V, then generating environments by
varying P(Y|V) with bias rate r. (Models are trained with r=0.6)

29

Our DGBR algorithm
can make a more stable

prediction across
unknown environments.

Average_Error: blue bar
Stability_Error: dark line



Experiments on Real World Data – setting 2
• Environments generating:

• Separate the whole dataset into 4 environments by users’ age, including
𝐴𝐴𝐴𝐴𝑒𝑒 ∈ [20,30), 𝐴𝐴𝐴𝐴𝑒𝑒 ∈ [30,40), 𝐴𝐴𝐴𝐴𝑒𝑒 ∈ [40,50), and 𝐴𝐴𝐴𝐴𝑒𝑒 ∈ [50,100).
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Our DGBR algorithm can make a more stable and precise prediction
across unknown environments.

Average_Error: blue bar
Stability_Error: dark line



Conclusion
• Stable prediction across unknown environments.

• Dependence issue, 𝑌𝑌 is not independent with 𝑉𝑉
• Environment shift issue, 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑽𝑽𝒕𝒕𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝒀𝒀𝒕𝒕𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 ≠ 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪(𝑽𝑽𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,𝒀𝒀𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕)

• Unknown testing environments
• We proposed Global Balancing Regression and Deep Global
Balancing Regression algorithms for stable prediction.

• We show, both theoretically and with empirical experiments, that 
our algorithms can make stable prediction across unknown 
environments
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